skip to main content


Search for: All records

Creators/Authors contains: "Menon, Mitra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The origins of maize were the topic of vigorous debate for nearly a century, but neither the current genetic model nor earlier archaeological models account for the totality of available data, and recent work has highlighted the potential contribution of a wild relative,Zea maysssp.mexicana. Our population genetic analysis reveals that the origin of modern maize can be traced to an admixture between ancient maize andZea maysssp.mexicanain the highlands of Mexico some 4000 years after domestication began. We show that variation in admixture is a key component of maize diversity, both at individual loci and for additive genetic variation underlying agronomic traits. Our results clarify the origin of modern maize and raise new questions about the anthropogenic mechanisms underlying dispersal throughout the Americas.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Betran, Esther (Ed.)
    Abstract Recognition of the important role of transposable elements (TEs) in eukaryotic genomes quickly led to a burgeoning literature modeling and estimating the effects of selection on TEs. Much of the empirical work on selection has focused on analyzing the site frequency spectrum (SFS) of TEs. But TE evolution differs from standard models in a number of ways that can impact the power and interpretation of the SFS. For example, rather than mutating under a clock-like model, transposition often occurs in bursts which can inflate particular frequency categories compared with expectations under a standard neutral model. If a TE burst has been recent, the excess of low-frequency polymorphisms can mimic the effect of purifying selection. Here, we investigate how transposition bursts affect the frequency distribution of TEs and the correlation between age and allele frequency. Using information on the TE age distribution, we propose an age-adjusted SFS to compare TEs and neutral polymorphisms to more effectively evaluate whether TEs are under selective constraints. We show that our approach can minimize instances of false inference of selective constraint, remains robust to simple demographic changes, and allows for a correct identification of even weak selection affecting TEs which experienced a transposition burst. The results presented here will help researchers working on TEs to more reliably identify the effects of selection on TEs without having to rely on the assumption of a constant transposition rate. 
    more » « less
  3. Abstract

    Extant conifer species may be susceptible to rapid environmental change owing to their long generation times, but could also be resilient due to high levels of standing genetic diversity. Hybridisation between closely related species can increase genetic diversity and generate novel allelic combinations capable of fuelling adaptive evolution. Our study unravelled the genetic architecture of adaptive evolution in a conifer hybrid zone formed betweenPinus strobiformisandP. flexilis. Using a multifaceted approach emphasising the spatial and environmental patterns of linkage disequilibrium and ancestry enrichment, we identified recently introgressed and background genetic variants to be driving adaptive evolution along different environmental gradients. Specifically, recently introgressed variants fromP. flexiliswere favoured along freeze-related environmental gradients, while background variants were favoured along water availability-related gradients. We posit that such mosaics of allelic variants within conifer hybrid zones will confer upon them greater resilience to ongoing and future environmental change and can be a key resource for conservation efforts.

     
    more » « less
  4. Abstract

    We implemented multilocus selection in a spatially‐explicit, individual‐based framework that enables multivariate environmental gradients to drive selection in many loci as a new module for the landscape genetics programs, CDPOP and CDMetaPOP. Our module simulates multilocus selection using a linear additive model, providing a flexible platform to evaluate a wide range of genotype‐environment associations. Importantly, the module allows simulation of selection in any number of loci under the influence of any number of environmental variables. We validated the module with individual‐based selection simulations under Wright‐Fisher assumptions. We then evaluated results for simulations under a simple landscape selection model. Next, we simulated individual‐based multilocus selection across a complex selection landscape with three loci linked to three different environmental variables. Finally, we demonstrated how the program can be used to simulate multilocus selection under varying selection strengths across different levels of gene flow in a landscape genetics framework. This new module provides a valuable addition to the study of landscape genetics, allowing for explicit evaluation of the contributions and interactions between gene flow and selection‐driven processes across complex, multivariate environmental and landscape conditions.

     
    more » « less
  5. Abstract

    A lack of optimal gene combinations, as well as low levels of genetic diversity, is often associated with the formation of species range margins. Conservation efforts rely on predictive modelling using abiotic variables and assessments of genetic diversity to determine target species and populations for controlled breeding, germplasm conservation and assisted migration. Biotic factors such as interspecific competition and hybridization, however, are largely ignored, despite their prevalence across diverse taxa and their role as key evolutionary forces. Hybridization between species with well‐developed barriers to reproductive isolation often results in the production of offspring with lower fitness. Generation of novel allelic combinations through hybridization, however, can also generate positive fitness consequences. Despite this possibility, hybridization‐mediated introgression is often considered a threat to biodiversity as it can blur species boundaries. The contribution of hybridization towards increasing genetic diversity of populations at range margins has only recently gathered attention in conservation studies. We assessed the extent to which hybridization contributes towards range dynamics by tracking spatio‐temporal changes in the central location of a hybrid zone between two recently diverged species of pines:Pinus strobiformisandP. flexilis. By comparing geographic cline centre estimates for global admixture coefficient with morphological traits associated with reproductive output, we demonstrate a northward shift in the hybrid zone. Using a combination of spatially explicit, individual‐based simulations and linkage disequilibrium variance partitioning, we note a significant contribution of adaptive introgression towards this northward movement, despite the potential for differences in regional population size to aid hybrid zone movement. Overall, our study demonstrates that hybridization between recently diverged species can increase genetic diversity and generate novel allelic combinations. These novel combinations may allow range margin populations to track favourable climatic conditions or facilitate adaptive evolution to ongoing and future climate change.

     
    more » « less
  6. Abstract

    Interactions between extrinsic factors, such as disruptive selection and intrinsic factors, such as genetic incompatibilities among loci, often contribute to the maintenance of species boundaries. The relative roles of these factors in the establishment of reproductive isolation can be examined using species pairs characterized by gene flow throughout their divergence history. We investigated the process of speciation and the maintenance of species boundaries betweenPinus strobiformisandPinus flexilis. Utilizing ecological niche modelling, demographic modelling and genomic cline analyses, we illustrated a divergence history with continuous gene flow. Our results supported an abundance of advanced generation hybrids and a lack of loci exhibiting steep transition in allele frequency across the hybrid zone. Additionally, we found evidence for climate‐associated variation in the hybrid index and niche divergence between parental species and the hybrid zone. These results are consistent with extrinsic factors, such as climate, being an important isolating mechanism. A build‐up of intrinsic incompatibilities and of coadapted gene complexes is also apparent, although these appear to be in the earliest stages of development. This supports previous work in coniferous species demonstrating the importance of extrinsic factors in facilitating speciation. Overall, our findings lend support to the hypothesis that varying strength and direction of selection pressures across the long lifespans of conifers, in combination with their other life history traits, delays the evolution of strong intrinsic incompatibilities.

     
    more » « less